



#### **Features**

- Supports 53.125Gbaud
- 100G Lambda MSA 100G-FR Specification compliant
- Up to 2km transmission on single mode fiber (SMF) with FEC
- Operating case temperature: 5 to 70°C
- 4x25G electrical interface (OIF CEI-28G- VSR)
- Maximum power consumption 4.5W
- LC duplex connector
- RoHS

### **Applications**

• Data Center and LAN

#### **Standard**

- Compliant to IEEE 802.3ba, IEEE 802.3bm and 100G
- Compliant to SFF-8436
- RoHS Compliant.

| PART NUMBER   | Monitor | INPUT/OUTPUT | SIGNAL<br>DETECT | TEMPERATURE    |
|---------------|---------|--------------|------------------|----------------|
| CL-Q28-FR1-2  | X       | AC/AC        | TTL              | -5°C to 70 °C  |
| CL-Q28-FR1-2i | X       | AC/AC        | TTL              | -40°C to 85 °C |



#### **Description**

## I. Absolute Maximum Ratings

| Parameter                            | Symbol          | Min  | Max | Units | Notes |
|--------------------------------------|-----------------|------|-----|-------|-------|
| Storage Temperature                  | Ts              | -40  | 85  | degC  |       |
| Operating Case Temperature           | T <sub>OP</sub> | - 5  | 70  | degC  |       |
| Power Supply Voltage                 | Vcc             | -0.5 | 3.6 | V     |       |
| Relative Humidity (non-condensation) | RH              | 0    | 85  | %     |       |
| Damage Threshold                     | THd             | 5.5  |     | dBm   |       |

# **II. Recommended Operating Conditions**

| Parameter                             | Symbol | Min   | Typical  | Max                  | Units | Notes |
|---------------------------------------|--------|-------|----------|----------------------|-------|-------|
| Operating Case Temperature            | Top    | 0     |          | 70                   | degC  |       |
| Power Supply Voltage                  | Vcc    | 3.135 | 3.3      | 3.465                | V     |       |
| Electrical Data Rate, each Lane (NRZ) |        |       | 25.78125 |                      | Gb/s  |       |
| Optical Data Rate (PAM4)              |        |       | 53.125   |                      | GBd   |       |
| Data Rate Accuracy                    |        | -100  |          | 100                  | ppm   |       |
| Pre-FEC Bit Error Ratio               |        |       |          | 2.4x10 <sup>-4</sup> |       |       |
| Post-FEC Bit Error Ratio              |        |       |          | 1x10 <sup>-12</sup>  |       | 1     |
| Control Input Voltage High            |        | 2     |          | Vcc                  | V     |       |
| Control Input Voltage Low             |        | 0     |          | 0.8                  | V     |       |
| Link Distance with G.652              | D      | 0.002 |          | 2                    | km    | 2     |

#### Notes:

- 1. FEC feature is embedded in the module.
- 2. FEC required to be turned on to support maximum transmission distance.



# **III. Optical Characteristics**

| Parameter                         | Symbol           | Min          | Typical       | Max          | Units | Notes |
|-----------------------------------|------------------|--------------|---------------|--------------|-------|-------|
|                                   | T                | ransmitter   |               |              |       |       |
| Center Wavelength                 | λt               | 1304.5       |               | 1317.5       | nm    |       |
| Side Mode Suppression Ratio       | SMSR             | 30           |               |              | dB    |       |
| Average Launch Power              | P <sub>AVG</sub> | -2.4         |               | 4            | dBm   | 1     |
| Outer Optical Modulation          | Рома             | -0.2         |               | 4.2          | dBm   | 2     |
| Amplitude (OMA <sub>outer</sub> ) | FOMA             | -0.2         |               | 4.2          | UDIII | 2     |
| Launch Power in OMAouter minus    |                  |              |               |              |       |       |
| TDECQ                             |                  | -1.6         |               |              | dBm   |       |
| for ER ≥ 5dB                      |                  | -1.5         |               |              |       |       |
| for ER < 5dB                      |                  |              |               |              |       |       |
| Transmitter and Dispersion Eye    | TDECQ            |              |               | 3.4          |       |       |
| Closure for PAM4 (TDECQ)          | TDECQ            |              |               | 3.4          | dB    |       |
| $TDECQ - 10*log_{10}(C_{eq})$     |                  |              |               | 3.4          | dB    | 3     |
| Extinction Ratio                  | ER               | 3.5          |               |              | dB    |       |
| RIN15.5OMA                        | RIN              |              |               | -136         | dB/H  |       |
| Optical Return Loss Tolerance     | TOL              |              |               | 17.1         | dB    |       |
| Transmitter Reflectance           | RT               |              |               | -26          | dB    |       |
| Transmitter Transition Time       |                  |              |               | 17           | ps    |       |
| Average Launch Power of OFF       | Poff             |              |               | -15          | dBm   |       |
|                                   |                  | Receiver     |               |              |       |       |
| Center Wavelength                 | λr               | 1304.5       |               | 1317.5       | nm    |       |
| Damage Threshold                  | TH₀              | 5.5          |               |              | dBm   | 4     |
| Average Receive Power             |                  | -6.4         |               | 4.5          | dBm   | 5     |
| Receive Power (OMAouter)          |                  |              |               | 4.7          | dBm   |       |
| Receiver Sensitivity (OMAouter)   | SEN              |              |               | Equation (1) | dBm   | 6     |
| Stressed Receiver Sensitivity     | CDC              |              |               | 0.5          | -ID   | 7     |
| (OMA <sub>outer</sub> )           | SRS              |              |               | -2.5         | dBm   | 7     |
| Receiver Reflectance              | R <sub>R</sub>   |              |               | -26          | dB    |       |
| LOS Assert                        | LOSA             | -15          |               |              | dBm   |       |
| LOS Deassert                      | LOSD             |              |               | -9.4         | dBm   |       |
| LOS Hysteresis                    | LOSH             | 0.5          |               |              | dB    |       |
| Condition                         | s of Stress R    | eceiver Sens | sitivity Test | (Note 8)     |       |       |
| Stressed Eye Closure for PAM4     |                  |              | 2.4           |              | dР    |       |
| (SECQ)                            |                  |              | 3.4           |              | dB    |       |

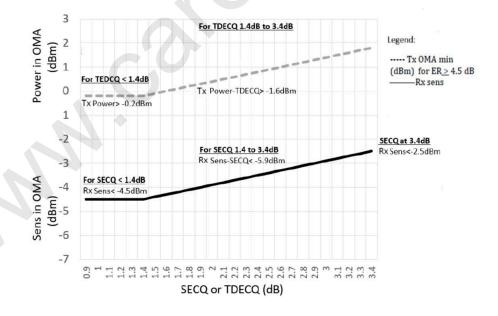
Headquarter: HK. 4/FI., Hong Kong & Macau Bldg., 156-157 Connaught Road Central Website: www.carelink.com.hk



| SECQ - 10*log <sub>10</sub> (C <sub>eq</sub> ) |  | 3.4 | dB |  |
|------------------------------------------------|--|-----|----|--|

#### Notes:

- 1. Average launch power (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4dB for an extinction ratio of  $\geq$  4.5dB or TDECQ < 1.3dB for an extinction ratio of < 4.5dB, the OMA<sub>outer</sub> (min) must exceed the minimum value specified here.
- 3. C<sub>eq</sub> is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.
- 4. Average receive power (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 6. Receiver sensitivity (OMAouter) (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB. It should meet Equation (1), which is illustrated in Figure 4.


 $RS = \max(-4.5, SECQ - 5.9) dBm (1)$ 

Where:

RS is the receiver sensitivity, and

SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

- 7. Measured with conformance test signal at TP3 for the BER equal to 2.4x10-4.
- 8. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.





# IV. Electrical Specifications

| Parameter                                                                                        | Test<br>Point | Min                                           | Typical | Max                                       | Units | Notes   |
|--------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|---------|-------------------------------------------|-------|---------|
| Power Consumption                                                                                |               |                                               |         | 4.5                                       | W     |         |
| Supply Current                                                                                   | Icc           |                                               |         | 1.36                                      | Α     |         |
|                                                                                                  | Transı        | mitter (each l                                | Lane)   |                                           |       |         |
| Overload Differential Voltage pk-pk                                                              | TP1a          | 900                                           |         |                                           | mV    |         |
| Common Mode Voltage (Vcm)                                                                        | TP1           | -350                                          |         | 2850                                      | mV    | 1       |
| Differential Termination Resistance<br>Mismatch                                                  | TP1           |                                               |         | 10                                        | %     | At 1MHz |
| Differential Return Loss (SDD11)                                                                 | TP1           | •(                                            |         | See CEI-<br>28G-VSR<br>Equation<br>13-19  | dB    |         |
| Common Mode to Differential Conversion and Differential to Common Mode Conversion (SDC11, SCD11) | TP1           |                                               |         | See CEI-<br>28G-VSR<br>Equation 13-<br>20 | dB    |         |
| Stressed Input Test                                                                              | TP1a          | See CEI-<br>28G-VSR<br>Section<br>13.3.11.2.1 |         |                                           |       |         |
|                                                                                                  | Rece          | iver (each La                                 | ane)    |                                           |       |         |
| Differential Voltage, pk-pk                                                                      | TP4           |                                               |         | 900                                       | mV    |         |
| Common Mode Voltage (Vcm)                                                                        | TP4           | -350                                          |         | 2850                                      | mV    | 1       |
| Common Mode Noise, RMS                                                                           | TP4           |                                               |         | 17.5                                      | mV    |         |
| Differential Termination Resistance Mismatch                                                     | TP4           |                                               |         | 10                                        | %     | At 1MHz |
| Differential Return Loss (SDD22)                                                                 | TP4           |                                               |         | See CEI-<br>28G-VSR<br>Equation 13-<br>19 | dB    |         |



| Common Mode to Differential     |     |      | See CEI-     |      |   |
|---------------------------------|-----|------|--------------|------|---|
| Conversion and Differential to  | TP4 |      | 28G-VSR      | dB   |   |
| Common Mode Conversion (SDC22,  |     |      | Equation 13- |      |   |
| SCD22)                          |     |      | 21           |      |   |
| Common Mode Return Loss (SCC22) | TP4 |      | -2           | dB   | 2 |
| Transition Time, 20 to 80%      | TP4 | 9.5  |              | ps   |   |
| Vertical Eye Closure (VEC)      | TP4 |      | 5.5          | dB   |   |
| Eye Width at 10-15 probability  | TP4 | 0.57 |              | UI   |   |
| (EW15)                          | 174 | 0.57 |              | UI   |   |
| Eye Height at 10-15 probability |     | 228  |              | mV   |   |
| (EH15)                          | TP4 | 220  |              | IIIV |   |

#### Notes

1. Vcm is generated by the host. Specification includes effects of ground offset voltage.

## **V. Digital Diagnostic Functions**

| Parameter                             | Symbol    | Min  | Max | Units | Notes                            |
|---------------------------------------|-----------|------|-----|-------|----------------------------------|
| Temperature Monitor Absolute Error    | DMI_Temp  | -3   | 3   | degC  | Over operating temperature range |
| Supply Voltage Monitor Absolute Error | DMI_VCC   | -0.1 | 0.1 | V     | Over full operating range        |
| RX Power Monitor Absolute Error       | DMI_RX    | -2   | 2   | dB    | 1                                |
| Bias Current Monitor                  | DMI_Ibias | -10% | 10% | mA    |                                  |
| TX Power Monitor Absolute Error       | DMI_TX    | -2   | 2   | dB    | 1                                |

#### Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/-3 dB total accuracy.

<sup>2.</sup> From 250MHz to 30GHz.



| 38 | GND     | Ÿ  |      |
|----|---------|----|------|
| 37 | TX1n    |    |      |
| 36 | TX1p    |    | -    |
| 35 | GND     |    |      |
| 34 | TX3n    | 1  |      |
| 33 | TX3p    |    | - 3  |
| 32 | GND     |    |      |
| 31 | LPMode  |    | - 1  |
| 30 | Vcc1    |    | - 0  |
| 29 | VccTx   | E. |      |
| 28 | IntL    | E. | 2    |
| 27 | ModPrsL |    | 2    |
| 26 | GND     |    |      |
| 25 | RX4p    |    | 3/0  |
| 24 | RX4n    |    |      |
| 23 | GND     |    |      |
| 22 | RX2p    |    | -1/0 |
| 21 | RX2n    |    |      |
| 20 | GND     | ji |      |

GND 2 TX2n TX2p 4 5 6 7 8 9 GND TX4n TX4p GND ModSelL ResetL VccRx 10 Edge SCL 11 SDA 12 GND 13 RX3p 14 RX3n 15 GND 16 RX1p 17 RX1n 18 GND 19

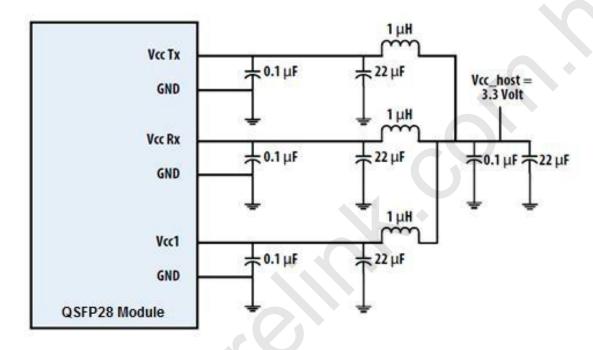
Top Side Viewed from Top

Bottom Side Viewed from Bottom

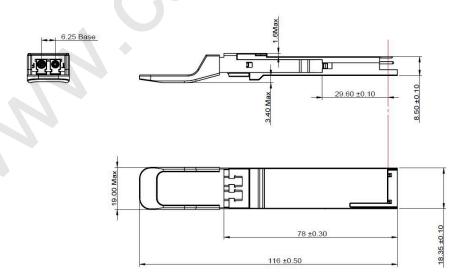
## **VII. Pin Definitions**

| PIN | Logic      | Symbol  | Name/Description                     | Notes |
|-----|------------|---------|--------------------------------------|-------|
| 1   |            | GND     | Ground                               | 1     |
| 2   | CML-I      | Tx2n    | Transmitter Inverted Data Input      |       |
| 3   | CML-I      | Tx2p    | Transmitter Non-Inverted Data output |       |
| 4   |            | GND     | Ground                               | 1     |
| 5   | CML-I      | Tx4n    | Transmitter Inverted Data Input      |       |
| 6   | CML-I      | Tx4p    | Transmitter Non-Inverted Data output |       |
| 7   |            | GND     | Ground                               | 1     |
| 8   | LVTLL-I    | ModSelL | Module Select                        |       |
| 9   | LVTLL-I    | ResetL  | Module Reset                         |       |
| 10  |            | VccRx   | +3.3V Power Supply Receiver          | 2     |
| 11  | LVCMOS-I/O | SCL     | 2-Wire Serial Interface Clock        |       |




| 12 | LVCMOS-I/O | SDA  | 2-Wire Serial Interface Data        |   |
|----|------------|------|-------------------------------------|---|
| 13 |            | GND  | Ground                              |   |
| 14 | CML-O      | Rx3p | Receiver Non-Inverted Data Output   |   |
| 15 | CML-O      | Rx3n | Receiver Inverted Data Output       |   |
| 16 |            | GND  | Ground                              | 1 |
| 17 | CML-O      | Rx1p | Receiver Non-Inverted Data Output   |   |
| 18 | CML-O      | Rx1n | Receiver Inverted Data Output       |   |
| 19 |            | GND  | Ground                              | 1 |
| 20 |            | GND  | Ground                              | 1 |
| 21 | CML-O      | Rx2n | Receiver Inverted Data Output       |   |
| 22 | CML-O      | Rx2p | Receiver Non-Inverted Data Output   |   |
| 23 |            | GND  | Ground                              | 1 |
| 24 | CML-O      | Rx4n | Receiver Inverted Data Output       | 1 |
| 25 | CML-O      | Rx4p | Receiver Non-Inverted Data Output   |   |
| 26 |            | GND  | Ground                              | 1 |
| 27 | LVTTL-O    | Mod  | Module Present                      |   |
| 28 | LVTTL-O    | IntL | Interrupt                           |   |
| 29 |            | VccT | +3.3 V Power Supply transmitter     | 2 |
| 30 |            | Vcc1 | +3.3 V Power Supply                 | 2 |
| 31 | LVTTL-I    | LPM  | Low Power Mode                      |   |
| 32 |            | GND  | Ground                              | 1 |
| 33 | CML-I      | Тх3р | Transmitter Non-Inverted Data Input |   |
| 34 | CML-I      | Tx3n | Transmitter Inverted Data Output    |   |
| 35 |            | GND  | Ground                              | 1 |
| 36 | CML-I      | Tx1p | Transmitter Non-Inverted Data Input |   |
| 37 | CML-I      | Tx1n | Transmitter Inverted Data Output    |   |
| 38 |            | GND  | Ground                              | 1 |

#### Notes:


<sup>1.</sup> GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

<sup>2.</sup> VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

# VIII. Recommended Power Supply Filter



## IX. Mechanical Diagram





#### Notice:

Carelink reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Carelink makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.